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Main Idea

Relative Attributes

Learning Prominent Differences

Predicting Prominent Visual Differences Impact on Image Search

Impact on Description Generation

Contributions

• When people compare images, 
certain prominent differences 
stick out, are described first

Goal: Learn and use 
prominent differences

Datasets:
• UT-Zap50K Shoes [Yu and Grauman 2014]: 50,025 shoe images, 10 attributes (sporty, formal, etc.)
• LFW10 Faces [Sandeep et al. 2014]: 2,000 face images, 10 attributes (smiling, bald head, etc.)
Annotations:
• Collect 5,000 pairs / dataset, label prominent difference 

Ours: Left has less dark hair, more bald, 
and more open mouth than right.

Baseline: More good looking, more 
mouth open, less young

Express an image’s attribute strength with 
respect to other images:

Problem: Many images satisfy all feedback, and appear equally relevant to the system

Intuition: People choose prominent differences between images to tell the system
Our approach: Order images by their prominence difference with user feedback

Our approach produces more relevant results, that are more similar 
to the user’s target, yet requires no additional user feedback

• Introduce prominent differences, a new functionality for 
understanding and expressing visual comparisons

• Model and predict prominent differences
• Demonstrate impact on visual search and natural language 

image description

Ranker models used:

Ours: Left is more tall, less sporty, and 
less rugged than the right.

Baseline: Less colorful, more shiny, more 
feminine

Ranking SVM
[Parikh and Grauman 2011]

Deep CNN + STN
[Singh and Lee 2016]Learn more/less labels using a ranker

Evaluation:
• Benchmark accuracy compared to prior work [Turakhia 

and Parikh 2013 **] and baseline approaches

We outperform all baselines on both 
datasets and for both ranking algorithms

Intuition: People describe images using prominent differences
Our Approach: Name predicted prominent attributes first

Our descriptions 
contain more 
prominent 
differences than 
other approaches

Human judges 
perceive our 
descriptions as more 
natural, appropriate

Given pair !"# , get relative attribute 
scores for each image:
$" → &'", &)", … , &+" , $# → &'#, &)#, … , &+#

Create symmetric representation 
, !"# for pair using attribute scores

Train multiclass classifier on , !"#
using labeled prominence pairs

Given new image pair, predict 
prominent difference(s)

Apply prominence to WhittleSearch [Kovashka et al. 2012 ~], an interactive image search 
framework

User provides feedback: 
more formal / comfortable, etc. 
than this

System ranks images by 
feedback satisfiedLess colorful 

than this
More shiny 
than this

Whittle Top Results (two iterations): Whittle Top Results (two iterations):

Our Top Results (two iterations): Our Top Results (two iterations):

User’s 
Target 
Image:

User’s 
Target 
Image:

Important to our perception 
(ex. what stands out when 
comparing shopping items?)

Influences human input
(ex. labeling, feedback to an 
interactive system)

www.stevenzc.com/
comparecontrast


